# Essential Question How can you use a table to describe

a function?

ฦ

## **ACTIVITY: Using a Function Table**

#### Work with a partner.

**a.** Copy and complete the table for the perimeter of the rectangle.

| Input, <i>x</i> | 1 | 2 | 3 | 4 | 5 |
|-----------------|---|---|---|---|---|
| Output, P       |   |   |   |   |   |

- Write an equation that describes the function. b.
- Use your equation to find the value of *x* for which the perimeter is 50. c.

3

X

1 square unit

#### 2 **ACTIVITY: Using a Function Table**

Work with a partner. Use the strategy shown in Activity 1 to make a table that shows the pattern for the area. Write an equation that describes the function. Then use your equation to find which figure has an area of 81.





## **ACTIVITY:** Making a Function Table

## Work with a partner. Copy and complete a sales tax table for each of the four cities.

Madison, WI, 5.50%

3

| Sale, x      | \$20 | \$30 | \$40 | \$50 | \$60 |
|--------------|------|------|------|------|------|
| Sales Tax, T |      |      |      |      |      |

Ann Arbor, MI, 6.00%

| Sale, x      | \$20 | \$30 | \$40 | \$50 | \$60 |
|--------------|------|------|------|------|------|
| Sales Tax, T |      |      |      |      |      |

Edison, NJ, 7.00%

| Sale, <i>x</i> | \$20 | \$30 | \$40 | \$50 | \$60 |
|----------------|------|------|------|------|------|
| Sales Tax, T   |      |      |      |      |      |

Norman, OK, 7.50%

| Sale, <i>x</i> | \$20 | \$30 | \$40 | \$50 | \$60 |
|----------------|------|------|------|------|------|
| Sales Tax, T   |      |      |      |      |      |

## -What Is Your Answer?

**4. IN YOUR OWN WORDS** How can you use a table to describe a function? Describe an example of a function table in real life.

| Amount of Sale | Tax |
|----------------|-----|
| .1016          | .01 |
| .1733          | .02 |
| .3450          | .03 |
| .5166          | .04 |
| .6783          | .05 |
| .84 - 1.09     | .06 |



"Dear Sir: Yesterday, I bought a piece of 9-cent candy six times and paid NO tax. Today, I bought six pieces at once and you charged me \$0.04 tax. What's going on?"



Use what you learned about input-output tables to complete Exercises 3 and 4 on page 382.

## 9.3 Lesson



Key Vocabulary () input-output table, p. 380



### Input-Output Tables

A function can be represented by an **input-output table**. The table below is for the function y = x + 2.

| Input, <i>x</i> | Output, y | $\checkmark$ $y = x + 2$   |
|-----------------|-----------|----------------------------|
| 1               | 3         | <b>→</b> 3 = 1 + 2         |
| 2               | 4         | <b>←</b> 4 = 2 + 2         |
| 3               | 5         | <b>← 5</b> = <b>3</b> + 2  |
| 4               | 6         | $\longleftarrow 6 = 4 + 2$ |

### EXAMPLE (1) Completing Input-Output Tables

Write an equation for the function. Then copy and complete the table.

a. The output is 1 less than the input.

| Input, <i>x</i> | 2 | 3 | 4 | 5 |
|-----------------|---|---|---|---|
| Output, y       |   |   |   |   |

**a.** An equation is y = x - 1.

| Input, <i>x</i> | 2 | 3 | 4 | 5 |  |
|-----------------|---|---|---|---|--|
| Output, y       | 1 | 2 | 3 | 4 |  |
| y = x - 1       |   |   |   |   |  |

b. The output is twice the input.

| Input, <i>x</i> | 0 | 3 | 6 | 9 |
|-----------------|---|---|---|---|
| Output, y       |   |   |   |   |

**b.** An equation is y = 2x.

| Input, <i>x</i> | 0 | 3 | 6  | 9  |  |  |
|-----------------|---|---|----|----|--|--|
| Output, y       | 0 | 6 | 12 | 18 |  |  |
| y = 2x          |   |   |    |    |  |  |

## 👂 On Your Own



#### Write an equation for the function. Then copy and complete the table.

1. The output is 5 more than the input.

| Input, <i>x</i> | 1 | 3 | 5 | 7 |
|-----------------|---|---|---|---|
| Output, y       |   |   |   |   |

**2.** The output is the product of 7 and the input.

| Input, <i>x</i> | 0 | 2 | 4 | 6 |
|-----------------|---|---|---|---|
| Output, y       |   |   |   |   |

EXAMPLE

2

#### **Standardized Test Practice**

#### Which function rule is shown by the table?

|          | y = 5x    | $(\textbf{B})  y = \frac{x}{5}$ |
|----------|-----------|---------------------------------|
| <b>©</b> | y = x + 4 | ( <b>D</b> ) $y = 10x$          |

Look at the relationship between the inputs and outputs. Each output y is 5 times the input *x*. So, the function rule is y = 5x.

| Input, <i>x</i> | Output, y |
|-----------------|-----------|
| 1               | 5         |
| 2               | 10        |
| 4               | 20        |
| 8               | 40        |

 $\therefore$  The correct answer is (A).

### **EXAMPLE**

#### **Finding a Missing Input** 3

| Input, <i>x</i> | Output, y |  |  |
|-----------------|-----------|--|--|
| 1               | 7         |  |  |
| 5               | 15        |  |  |
| 10              | 25        |  |  |
| 20              | 45        |  |  |
| ?               | 53        |  |  |

Each output in the table is 5 more than twice the input. Find the missing input.

**Step 1:** Write an equation for the function shown by the table.

| Words     | Outpu                | <mark>it</mark> is fir | ve more than | <mark>twice</mark> t | he input.                |          |
|-----------|----------------------|------------------------|--------------|----------------------|--------------------------|----------|
| Variables | Let <mark>y</mark> ł | be the                 | output value | and x                | be the <mark>inpu</mark> | t value. |
| Equation  | y                    | =                      | 5 +          | 2 •                  | x                        |          |

An equation is y = 5 + 2x.

#### **Step 2:** Substitute 53 for *y*. Then solve for *x*.

| y = 5 + 2x  | Write the equation.          |    |
|-------------|------------------------------|----|
| 53 = 5 + 2x | Substitute 53 for <i>y</i> . | 2( |
| 48 = 2x     | Subtract 5 from each side.   |    |
| 24 = x      | Divide each side by 2.       |    |





• The missing input is 24.

### On Your Own



Use the first three input values to write an equation for the function shown by the table. Then find the missing input.

| 3. | Input, <i>x</i> | Output, y |
|----|-----------------|-----------|
|    | 1               | 5         |
|    | 3               | 7         |
|    | 7               | 11        |
|    | ?               | 25        |

| 4. | Input, <i>x</i> | Output, y |
|----|-----------------|-----------|
|    | 2               | 1         |
|    | 4               | 2         |
|    | 6               | 3         |
|    | ?               | 4         |

## 9.3 Exercises



## Vocabulary and Concept Check

- **1. VOCABULARY** Explain how you can use an input-output table to represent a function.
- 2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.

What output is 4 more than twice the input 3?

What output is the sum of 2 times the input 3 and 4?

What output is twice the sum of the input 3 and 4?

What output is 4 increased by twice the input 3?



## Practice and Problem Solving

Copy and complete the input-output table for the function.

**3.** y = x + 5

| Input, x  | 1 | 2 | 3 | 4 |
|-----------|---|---|---|---|
| Output, y |   |   |   |   |

| Input, <i>x</i> | 0 | 2 | 4 | 6 |
|-----------------|---|---|---|---|
| Output, y       |   |   |   |   |

**4.** y = 4x

### Write an equation for the function. Then copy and complete the table.

**1 5.** The output is 3 more than the input.

| Input, <i>x</i> | 0 | 1 | 2 | 3 |
|-----------------|---|---|---|---|
| Output, y       |   |   |   |   |

| 6. | The out | put is | 5 times | the | input. |
|----|---------|--------|---------|-----|--------|
|----|---------|--------|---------|-----|--------|

| Input, <i>x</i> | 1 | 3 | 5 | 7 |
|-----------------|---|---|---|---|
| Output, y       |   |   |   |   |

### Write an equation for the function shown by the table.

| 2 | 7. | Input, <i>x</i> | 1 | 2  | 3  | 4  |
|---|----|-----------------|---|----|----|----|
|   |    | Output, y       | 9 | 10 | 11 | 12 |

| 9. | Input, <i>x</i> | 0 | 3 | 6 | 9 |  |
|----|-----------------|---|---|---|---|--|
|    | Output, y       | 0 | 1 | 2 | 3 |  |

**11. ERROR ANALYSIS** Describe and correct the error in writing an equation for the function shown by the table.

| 8. | Input, <i>x</i> | 2 | 4 | 6  | 8  |
|----|-----------------|---|---|----|----|
|    | Output, y       | 4 | 8 | 12 | 16 |

9

7

| 10. | Input, <i>x</i> | 3 | 5 | , |
|-----|-----------------|---|---|---|
|     | Output, y       | 1 | 3 | ļ |

| X | Input, <i>x</i> | 0 | 4 | 8 | 12 |
|---|-----------------|---|---|---|----|
|   | Output, y       | 0 | 1 | 2 | 3  |
|   | y = 4x          |   |   |   |    |

#### In Exercises 12 and 13, copy and complete the table.

**12.** For each output, multiply the input by 4, then subtract 5.

| Input, <i>x</i> | 2 | 3 | 4  | 7  |    |    |
|-----------------|---|---|----|----|----|----|
| Output, y       | 3 | 7 | 11 | 23 | 35 | 55 |

**13.** For each output, divide the input by 2, then add 4.

| Input, <i>x</i> |   | 2 | 4 | 10 |    |    |
|-----------------|---|---|---|----|----|----|
| Output, y       | 4 | 5 | 6 | 9  | 12 | 17 |

**14. GEOGRAPHY** You travel along US Highway 1 from mile marker 0 in Key West to mile marker 100 in Key Largo.



a. Copy and complete the input-output table.

| Distance from Key West, <i>x</i> | 0 | 30 | 47 | 82 | 100 |
|----------------------------------|---|----|----|----|-----|
| Distance to Key Largo, y         |   |    |    |    |     |

- **b.** Write a function rule in which *x* is the input and *y* is the output.
- **c.** Can you use your function rule to find the distance to Florida City? If not, write a function rule that you can use.
- **15. TIME** Make an input-output table with the Greenwich Mean Time (GMT) hourly times as inputs, and times where you live as outputs. Write a function rule for the data.
- **16.** Write an equation with the same outputs as y = 2x + 3 for x = 0, 1, 2, 3, and 4.

| A |      | Fair Game f                             | Review what y         | /ou learned in previous grades      | & lessons         |
|---|------|-----------------------------------------|-----------------------|-------------------------------------|-------------------|
|   | Plot | the ordered pairs                       | in the same coord     | dinate plane. (Skills Review        | Handbook)         |
|   | 17.  | (1, 2)                                  | <b>18.</b> (0, 7)     | <b>19.</b> (2, 3)                   | <b>20.</b> (6, 5) |
|   | 21.  | <b>MULTIPLE CHOICE</b><br>(Section 8.3) | Which is the solu     | tion of the inequality $6x \le 243$ | ?                 |
|   |      | (A) $x < 4$                             | <b>B</b> <i>x</i> ≤ 4 | <b>(C)</b> <i>x</i> < 144           | (D) $x \le 144$   |